Module 8

Disease and Production Measures of Animal Welfare

This lecture was first developed for

World Animal Protection by Dr David Main

(University of Bristol) in 2003. It was revised

by World Animal Protection scientific advisors in

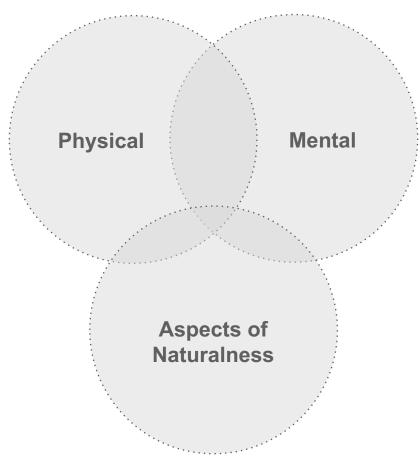
2012 using updates provided by Dr Caroline Hewson.

Free online resources

To get free updates and additional materials, please go to www.animalmosaic.org/education/tertiary-education/

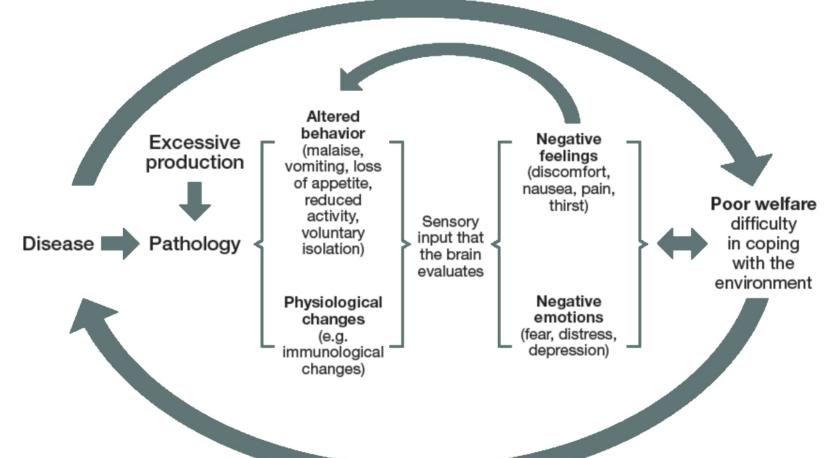
This module will show you

How disease, production and welfare are related to each other


What measures of disease and production you can use when assessing physical functioning and related feelings

Disease and production

Disease = a physical or mental condition where normal function is disturbed or harmed (Cockram & Hughes, 2011)


Intensive (and excessive) production may place heavy demands on normal function, resulting in similar levels of disruption

Three approaches when considering animal welfare

After Appleby, M. C. (1999) and Fraser et al. (1997)

Disease always means poor welfare

After Broom & Fraser, 2007

Poor welfare may increase susceptibility to disease

Disease

Infectious

Prions, viruses, bacteria, fungi, parasites (protozoa, helminths, insects)

Non-infectious

Metabolic (production-related)

Nutritional

Neoplastic

Autoimmune

Genetic, eg dogs (McGreevy & Bennett, 2010)

Why disease reduces welfare

Pain

Thirst, nausea, hunger (inability to compete for food)

Secondary problems

- Immobilised, so vulnerable ⇒ fear or distress,
 and risk of pressure sores and circulatory
 problems ⇒ pain, weakness
- Fatigue from immune response

Disease and pain

Pain (Livingston & Chambers, 2000)

Noxious stimuli:

- Chemical, mechanical or thermal
- For example, disease and injury ⇒ inflammation ⇒ chemical and mechanical stimuli

Detected by nociceptors

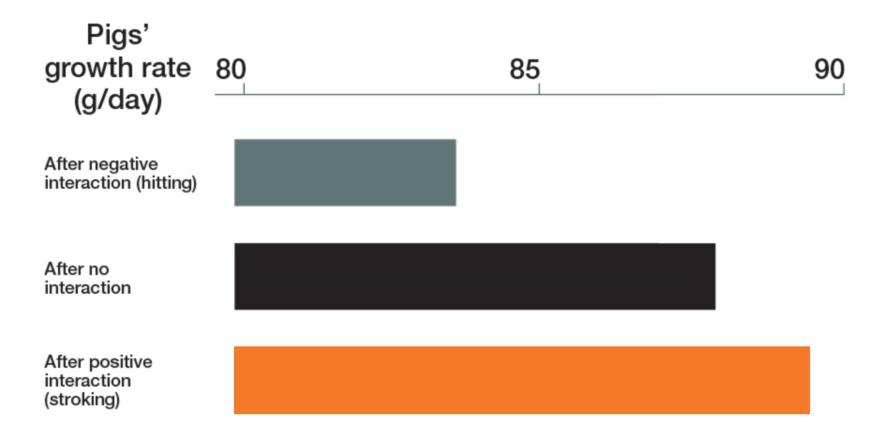
Transmitted by myelinated and unmyelinated sensory nerve fibres to spinal cord

Transmitted from spinal cord to forebrain

Forebrain ⇒ experience of pain

PERCEPTION To alter perception: Anaesthetics TRANSMISSION and MODULATION · Opioids To inhibit central sensitization: • α-2 agonists Opioids Benzodiazepines α-2 agonists Phenothiazines NSAIDs • NMDA antagonists (ketamine) Anticonvulsants **IMPULSE CONDUCTION** To inhibit impulse conduction directly and central sensitization indirectly: Local anaesthetics SIGNAL TRANSDUCTION Diagram based on To inhibit peripheral sensitization: Pain Management for the NSAIDs Small Animal Practitioner. Corticosteroids Used with kind permission of Teton NewMedia™

© Sir James Dunn Animal Welfare Centre, Atlantic Veterinary College, Canada.


Disease and pain

Untreated pain can cause sensitisation of the pain pathway

- Hyperalgesia: heightened perception of existing pain
- Allodynia: pain response to a lowintensity, normally non-painful, stimulus
- Sensitisation of the central nervoussystem by an acute disease may persistfor several months

Persistence of pain

(Ley et al., 1995)

Assessing pain (Dobromylski et al., 2000)

Acute pain

Posture, gait, demeanour, inappetence, increased respiratory and heart rate, grinding teeth, response to palpation, vocalisations, response to analgesia

Chronic pain

Irritability, social withdrawal, aggression, weight loss

Other causes of pain

Injury, eg

- Routine procedures
- Fighting
- Slippery flooring
- Rough handling

Parturition

Markers of disease

Clinical signs

- Changes in behaviours: sickness behaviours, pain behaviours, eg lameness
- Physical changes: pale mucous membranes, swollen limb, elevated body temperature, reduced production, etc.
- Production measures: body condition score, body weight, fertility measures, etc.

Clinical pathology

Laboratory tests – haematocrit,
 biochemistry, urinalysis, faecal
 culture, histopathology

Measures of disease

Incidence

- Number of new cases in a fixed time
 period divided by the number of animals
 at risk
- Usually annual
- Prevent new cases, e.g. by vaccination, improving hygiene, nutrition, etc.

Measures of disease

Prevalence

Proportion of animals affected by the disease at any point in time For example, working equids (Burn et al., 2010)

- Ectoparasite prevalence: 96 per cent in Guatemala vs. 67 per cent in the Gambia
- Gait abnormalities: 100 per cent in theGambia vs. 33 per cent in Afghanistan

Production and welfare

Total output

- Milk
- Litter size
- Speed or weight carried (working animals)

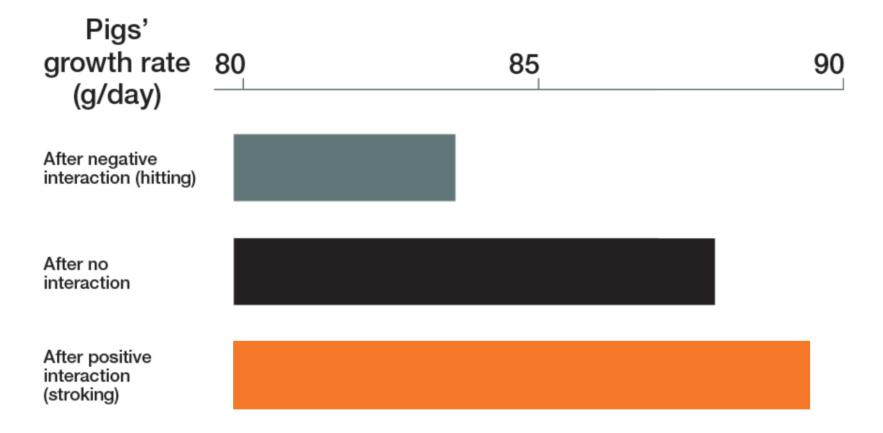
Rate or frequency of production

- Growth rate
- Calving-to-conception period (cows)
- Number of litters per year (pigs, sheep)

Genetics and welfare

High production produces secondary effects, eg

Osteomalacia in laying hens (Hocking et al., 2011)


Metabolic exhaustion in highproducing dairy cows (Oltenacu & Algers, 2005)

 Loss of body condition because conversion of food intake into milk is not efficient Genetic correlation between high milk production and reduced fertility

Made worse in less intensive environments

i.e. declinein adaptability

Animal handling and welfare (Gonyou et al., 1986)

Markers of production

Body condition score

Body weight and carcass weight

Average daily yield (milk)

Litter size

Measures of meat quality

Summary so far

Why disease reduces welfare

Negative feelings, especially pain

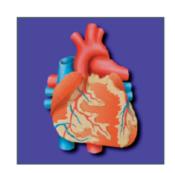
Why production can reduce welfare

 Metabolic demands can cause painful conditions and reduced bodily functioning

Welfare inputs and outputs

Environment

Animal

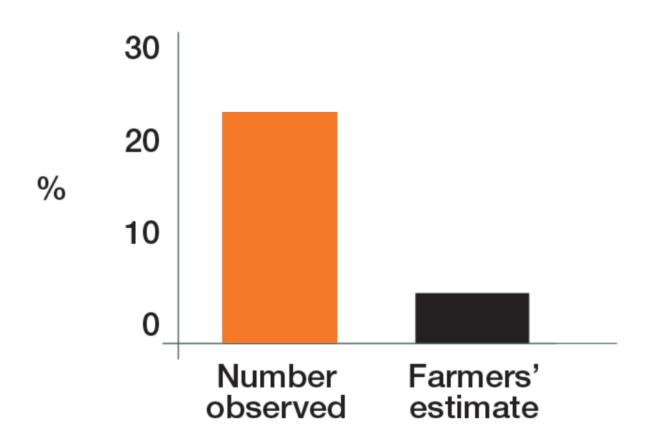

Clinical health; production

Behaviour

Physiology

Disease and production measures of welfare

Welfare inputs, eg


- Genetics
- Biosecurity
- Vaccinations
- Helminth control
- Nutrition
- Transport
- Group size
- Dairy hygiene
- Use of analgesics for routine procedures

Disease and production measures of welfare

Welfare outputs, eg

- Incidence/prevalence of lameness, mastitis,
 bruised carcasses, metabolic disease, culling, etc.
- Amount of antibiotics used
- Visits from the vet
- Somatic cell counts
- Production: fertility, growth rate, milk yield etc.

Perception of dairy cattle lameness (Whay et al., 2003)

Summary

Disease and production can affect welfare by disrupting physical function and creating feelings of pain, fatigue, nausea, etc.

- Importance of pain pathway
- Role of genetics in production and secondary effects on welfare

Disease and production can be assessed using relevant welfare inputs and outputs

Train the farmer to recognise diseases

Feedback: Please let us know what you think

- How have you used this module?
- What did you like about it?
- What did you not like?
- Do you have any tips to share?

Please take part in our 10 minute survey here:

https://www.surveymonkey.com/s/BKP3D6H

Your feedback will help other teachers like you

References

Appleby, M.C., (1999) What Should We Do About Animal Welfare? Oxford, Blackwell.

Burn, C. C., Dennison, T. L., & Whay, H. R. (2010). Environmental and demographic risk factors for poor welfare in working horses, donkeys and mules in developing countries. *The Veterinary Journal*, *186*, 385-392.

Cockram, M. S., & Hughes, B. O. (2011). Health and disease. In M. C. Appleby, J. A. Mench, I. A. S. Olsson, & B. O. Hughes (Eds.), *Animal welfare* (2nd ed.) (pp. 120-137). Wallingford, UK: CABI.

Dobromylski, P., Flecknell, P. A., & Lascelles, B. D. (2000). Pain assessment. In P. Flecknell, & A. Waterman-Pearson (Eds.), *Pain management in animals* (pp. 53-80). London: WB Saunders.

Fraser, D., Weary, D. M., Pajor, E. A., Milligan, B. N. 1997 A scientific conception of animal welfare that reflects ethical concerns. Animal Welfare 6: 187-205

Gonyou, H. W., Hemsworth, P. H., & Barnett, J. L. (1986). Effects of frequent interactions with humans on growing pigs. *Applied Animal Behaviour Science*, *16*, 269-278.

Hocking, P. M., D'Eath, R. B., & Kjaer, J. B. (2011). Genetic selection. In M. C. Appleby, J. A. Mench, I. A. S. Olsson, & B. O. Hughes (Eds.), *Animal welfare* (2nd ed.) (pp. 263-278). Wallingford, UK: CABI.

Ley, S. J., Waterman, A. E., & Livingston, A. (1995). A field study of the effect of lameness on mechanical nociceptive thresholds in sheep. *Veterinary Record, 137*, 85-87.

Livingston, A., & Chambers, P. (2000). The physiology of pain. In P. Flecknell, & A. Waterman-Pearson (Eds.), *Pain management in animals* (pp. 9-20). London: WB Saunders.

McGreevy, P. D., & Bennett, P. C. (2010). Challenges and paradoxes in the companion animal niche. *Animal Welfare*, *19*(S), 11-16.

Oltenacu, P. A., & Algers, B. (2005). Selection for increased production and the welfare of dairy cows: Are new breeding goals needed? *Ambio*, *34*. 311-315.

Viñuela-Fernández, I., Jones, E., Welsh, E. M., & Fleetwood-Walker, S. M. (2007). Pain mechanisms and their implication for the management of pain in farm and companion animals. *The Veterinary Journal*, 174, 227-239.

Whay, H. R., Main, D. C., Green, L. E., & Webster, A. J. (2003). Assessment of the welfare of dairy cattle using animal-based measurements: Direct observations and investigation of farm records. *Veterinary Record*, *153*, 197-202.