Module 6

## Assessing Animal Welfare Physiological Measures

This lecture was first developed for **World Animal Protection** by Dr David Main (University of Bristol) in 2003. It was revised by **World Animal Protection** scientific advisors in 2012 using updates provided by Dr Caroline Hewson.

Free online resources

To get free updates and additional materials, please go to

www.animalmosaic.org/education/tertiary-education/

## This module will examine

### The relationship between welfare and the physiological responses

#### **Stress response**

- Chronic stress and welfare
- How measures of stress response may be used in the assessment of welfare
- Limitations

Immune responses

Neurobiological responses

**Metabolic responses** 

## Animals' experience



## The adaptive process

Animal adapts and survives

- homeostasis, eg maintain blood pH at 7.35–7.45
- allostasis, eg changes in physiology and behaviour in pregnancy and lactation

## **Review: physiological responses**

**Stress response** 

Immune responses (eg white blood cell count)

Neurobiological responses (eg oxytocin)

Metabolic responses

Other, eg reproductive hormones

## Welfare and the stress response

### What is stress?

In physics – the amount of pressure applied until the breaking point is reached

In biology: "Stress is an environmental effect on an individual which over-taxes its control systems and results in adverse consequences, eventually reduced fitness." (Broom & Johnson, 2000)

- Threats = internal and external (stressors)
- Homeostasis, e.g. pH of blood



### **The stress response** (Mormède et al., 2007; Blache et al., 2011)

### Autonomic nervous system

- sympathetic (adrenaline, noradrenaline)
- parasympathetic (acetylcholine)

### Hypothalamo-pituitary-adrenal (HPA) axis

# Sympathetic-adrenal-medullary (SAM) system



## **Effects of SAM activation**

### Sympathetic stimulation of sinoatrial node

increased heart rate and increased strength of cardiac muscle contraction lead to increased cardiac output

#### Increased blood flow to key organs

peripheral vasoconstriction and contraction of the spleen

#### **Increased air intake**

increased respiratory rate and relaxation of bronchioles in the lungs

### Non-essential bodily activities are inhibited

## Parasympathetic nervous system

**Regulates SAM system** 

### **Reduces cardiac output**

bradycardia via effect on sinoatrial node



Module 6: Assessing Animal Welfare Concepts in Animal Welfare © World Animal Protection 2014. Unless stated otherwise, image credits are World Animal Protection.

## The stress response

### Autonomic nervous system

- sympathetic (adrenaline, noradrenaline)
- parasympathetic (acetylcholine)

Hypothalamo-pituitary-adrenal (HPA) axis

**Chronic exposure to stressors** 

## **HPA Axis - Cortisol**





Mobilises energy stores in the short term

## Stimulates glycogenolysis in the liver and suppresses insulin secretion

Increases glucose levels in the blood

### Self-regulating system

Gives negative feedback to the pituitary gland and the hypothalamus, thereby indirectly to the adrenal glands. This modulates the stress response as the animal's situation improves

## **HPA characteristics**

Measure of acute welfare changes

## Response not as immediate as the SAM system

eg plasma glucocorticoids elevated
 2–10 minutes after stimulation

## **Summary of stress response**



Module 6: Assessing Animal Welfare Concepts in Animal Welfare © World Animal Protection 2014. Unless stated otherwise, image credits are World Animal Protection.

## Welfare and the stress response

### Any event in the animal's life can create a stress response

Should be adaptive

### Experiencing stress is a natural response

- Only a concern when animal is stressed beyond ability to cope pathology
- Chronic, inescapable bad conditions ⇒ maladaptive

| Туре                     | Stressor                 | Associated feelings        |
|--------------------------|--------------------------|----------------------------|
| Physical (Environmental) | Heat/cold                | Thermal discomfort         |
|                          | Lack of food/water       | Hunger/thirst              |
|                          | Disease and injury       | Pain, nausea, weakness     |
|                          | Confinement              | Frustration, boredom, pain |
|                          | Over-exertion            | Fatigue, pain, anxiety     |
| Physiological            | Metabolic demands        | Weakness                   |
|                          | Nutritional deficiencies | Weakness                   |
| Mental                   | Behavioural deprivation  | Frustration, boredom       |
|                          | Social stress            | Anxiety, fear              |

## Welfare and chronic stress

## Chronic stress can create pre-pathological states, eg

- Reduced immunity
- Hypertension
- Enlarged adrenal gland
- Lack of growth
- Weight loss
- Reduced fertility
- Gastrointestinal ulcers

## Examples of indices of acute stress response

| Index            | Stress system | Measure with |
|------------------|---------------|--------------|
| Heart rate       | SAM           | Stethoscope  |
| Blood pressure   | SAM           | Cuff         |
| Respiratory rate | SAM           | Visual       |
| Catecholamines   | SAM           |              |
| Glucocorticoids  | HPA           | Blood sample |
| ACTH             | HPA           |              |

## Examples of measures of chronic stress response

### **Glucocorticoids**

- Urine, saliva, milk
- ACTH stimulation

## Stress in relation to welfare: practical examples

Capture of wild vicuñas for shearing Effect of kennelling on dogs Capture of wild sardines Castration of farm animals Piglets

- Dairy calves
- Water buffalo

## Capture of wild vicuñas for shearing (Arzamendia et al., 2010)

~500 wild vicuñas rounded up

### Three methods used

- People on foot
- Vehicles only (trucks, bikes)
- Combination: vehicles + people on foot

### **Measured stress response**

- Direct measures (SAM): heart rate, temperature, respiratory rate
- Blood samples (HPA and SAM): glucose, cortisol, muscle enzymes

### Behaviours, eg vocalising, fighting

## Capture of wild vicuñas for shearing (Arzamendia et al., 2010)

### **Cortisol: sex difference**

- Females: captured by people on foot had higher levels of cortisol and more vocalising than females captured by vehicles and people
- Males: captured by people on foot had lower levels of cortisol than males captured by vehicles and people

### **Cortisol: effect of captivity**

 Cortisol values remained high, as did vigilance and alertness

Creatine kinase increased with longer captivity, especially in females

## **Effect of kennelling on dogs** (Hiby et al., 2006)

26 dogs entering shelter

### Urinary cortisol measured on

days 1, 2, 3, 5, 7 and 10 after admission

Half were from homes; half were either strays or returns to the shelter

Mean cortisol tended to decrease with time in the strays and returns, and to increase in dogs relinquished from homes



### **Capture of wild sardines** (Marcalo et al., 2006)

Commercial purse-seine fishing, Atlantic Ocean, Portugal

### **174 sardines**

### Effect of time spent in the net

Marked elevation of cortisol after one hour



Credit: NOAA

## **Castration of farm animals**

### **Castration = tissue damage**

Noxious sensory input

#### **Brain evaluates input**

Emotions and feelings, eg pain and fear/frustration as they try to escape and cannot

#### **Body responds**

Pain behaviour, stress response

## **Example 1: castration of piglets**

### Piglets (Hay et al., 2003)

- 84 piglets; five days old
- No clear effect on urinary corticosteroids, catecholamines or growth. Clear effects on pain behaviours for up to four days afterwards

### **Example 2: castration of dairy calves** (Stafford et al., 2002)

190 Friesian calves, up to six months old, four different castration techniques used

Simulated castration: no significant changes in cortisol caused by handling or lignocaine

### When castration was carried out without analgesia

- All methods significantly increased cortisol to 56–101 nmol/l (comparison: ACTH response = 99 nmol/l)
- Clamp castration: smallest cortisol response.
   Analgesia eliminated it. However, castration not always successful

### Surgical castration: local anaesthetic did not reduce cortisol response.

### Surgical castration: local anaesthetic + ketoprofen eliminated cortisol response

### Example 3: castration of water buffalo (Martins et al., 2011)

### 21 calves; 7–18 months old

### **Compared methods of castration**

- Surgical vs. clamp vs. no castration
- No analgesia
- Measured cortisol

### **Results**

- Surgical castration: cortisol elevated for ~6 hours;
   pain on palpation at 48 hours
- Clamp: cortisol elevated for ~9 hours; no pain on palpation at 48 hours



# Limitations of adrenal activity measures (1)

Do not indicate if animal's experience is positive, negative or neutral

Increased activity from stress

Measurement itself may be stressful

Cost (eg implanted devices, some lab analyses)



# Limitations of adrenal activity measures 2

### Individual differences eg

Species and breed (Mormède et al., 2007)

Sex (Arzamendia et al., 2010)

Experience (Hiby et al., 2006)

'High' vs. 'low' responders, e.g.

- Catecholamines in rats (Livezey et al., 1985)
- Cortisol in Zebu cows (Solano et al., 2004)

# Limitations of adrenal activity measures 3

### Habituation or sensitisation

Depends on nature of the stressorEg daily vs. occasional exposure

### Circadian rhythms, eg glucocorticoids

# Limitations of adrenal activity measures 4

### Interpreting combined measures?

Conflicting measures within a study, eg aspartate transaminase vs. creatine kinase in vicuña study (Arzamendia et al., 2010)

### **Conflicting results between studies**

Eg urinary corticosteroids in piglets (Hay et al., 2003)

## **Review: physiological responses**

#### **Stress response**

- Autonomic nervous system
- HPA axis

#### **Immune responses**

**Neurobiological responses** 

**Metabolic responses** 

## **Overview of the immune response**

#### Innate response

- Cells, e.g. phagocytic cells such as neutrophils, macrophages
- Chemicals, e.g. the complement system

### **Adaptive response**

- T cells cell-mediated immunity
- B cells humoral immunity (antibodies)

### Role of chemical messengers, e.g. cytokines:

Interleukin-2 and gamma-interferon ( $\gamma$ -interferon)

## Interaction with stress reponse

## Immune tissues all innervated by sympathetic nervous system (Bellinger et al., 2008)

- Bone marrow, thymus, spleen, lymph nodes, gut-associated lymphoid tissue
- Research is ongoing regarding the effect of noradrenaline, adrenaline and cortisol on the immune tissues and cells
- The role of cortisol

## **Cortisol and infection**

Initial immune response 
chemicals released

into the blood, e.g. leucotrienes

Detected by brain and ate stress response

Moderate elevations of cortisol can help

with immune response

Infection is overcome

## **Stress and the immune response**

### For example, parturition, social instability, long journeys

- Cortisol already elevated in reduced immune capacity (e.g. decreased circulating lymphocytes, decreased phagocytosis, reduced production of cytokines)
- Infection not readily overcome

## Parturition and mastitis in dairy cows

### Parturition: high levels of cortisol

- **Expulsion of foetus**
- Milk letdown
- Also, adverse imbalances in T cells at risk of mastitis, especially if environment dirty, poorly fed, in pain



Credit: J. Sutcliffe / flickr.com

## Handling and immunity in lambs (Caroprese et al., 2006)

### 64 Comisana lambs

Compared daily human handling and artificial rearing vs. daily human handling and natural rearing

- Lambs injected with mollusc antigen at 3 days and 15 days
- Lambs were put in a novel isolation pen at 15 days and 45 days
- Daily human handling had positive effect on antibody levels in artificially reared lambs but not in ewe-reared lambs
- Ewe had positive effect on lambs' immunity



Credit: J. Hynds / flickr.com

# Transport and respiratory disease in cattle 1

## Some transport may enhance the immune response (Buckham Sporer et al., 2008)

- Belgian Blue Cross bulls reared indoors
- Nine hours transportation by truck with rest stop after 4.5 hours
- Blood taken at intervals before, during and up to 48 hours after transportation
- During transport, cortisol was significantly elevated, as were lymphocytes and neutrophils in the blood
- No obvious adverse effect on neutrophil gene expression



# Transport and respiratory disease in cattle 2

How much transport? (Earley et al., 2012)

- Measured gamma-interferon, etc.
- Journey by sea and truck for ~28 hours;
   24 hours rest; then another 18 hours journey
- The rest ensured adequate recovery

### Neurobiological measures (Ziemssen & Kern, 2007)

The brain can modify immune response via HPA and autonomic nervous system

Immune response can also affect the brain

- Cytokine receptors in brain
- Glucocorticoid receptors in brain

### Neurobiological measures (Broom & Zanella, 2004)

Brain activity (MRI)

Learning and memory

### Neurotransmitters, eg

- Opioids
- Dopamine
- Prolactin

## **Opioids**

### **Three types**

- Endorphins
- Enkephalins
- Dynorphins

### **Functions**

- Stress-induced analgesia
- Control hormone release
- Perception of pleasurable stimuli

### Different receptors, eg

🖷 Kappa (κ), mu (μ)

## **Opioid examples**

### Lambs

 Increase in plasma ß-endorphin during castration, tail-docking and mulesing (Shutt et al., 1987)

### Tethered sows (Zanella et al., 1996)

- Passive sows had higher µ-receptor density than group-housed sows
- stereotyping sows had low  $\kappa$  and  $\mu$ -receptors
- Role of glucocorticoids?

## Dopamine

Catecholamine

Various receptors (D1, D2, etc.)

Mood, locomotion, voluntary movement

### Stereotypies, eg

Sows in stalls, bar-biting: low dopamine



## **Prolactin**

### **Pituitary gland**

### Modulates emotions and acute stress response

Hospitalised dogs (Siracusa et al., 2010)

- Appeasing pheromone associated with lower plasma prolactin
- Appeasing pheromone not associated with dogs' behaviour or welfare



## **Metabolic responses**



## **Metabolic responses to stress**

Glucose

Lactic acid

**Beta-hydroxy-butyrate** 

Haematocrit

Muscle enzymes, eg creatine kinase

Hormones, eg insulin, thyroid hormones



## There are many physiological measures of welfare, and many reflect the stress response

### **Stress response – SAM and HPA**

- Acute response to maintain homeostasis
- Chronic response may be maladaptive

### All responses can affect production

### Need for other measures as well

## Feedback: Please let us know what you think

- How have you used this module?
- What did you like about it?
- What did you not like?
- Do you have any tips to share?

Please take part in our 10 minute survey here:

https://www.surveymonkey.com/s/BKP3D6H

Your feedback will help other teachers like you

### References

Arzamendia, Y., Bonacic, C., & Bibiana, V. (2010). Behavioural and physiological consequences of capture for shearing of vicuñas in Argentina. *Applied Animal Behaviour Science*, *125*,163-170.

Bellinger, D. L., Millar, B. A., Perez, S., Carter, J., Wood, C., ThyagaRajan, S., Molinaro, C., Lubahn, C., Lorton, D. (2008). Sympathetic modulation of immunity: Relevance to disease. Cellular Immunology 252: 27–56

Blache, D., Terluow, C., & Maloney, S. K. (2011). Physiology. In M. C. Appleby, J. A. Mench, I. A. S. Olssson, & B. O. Hughes (Eds.), *Animal welfare* (2nd ed., pp. 155-182). Wallingford, UK: CABI.

Broom, D.M. and Johnson, K.G. 2000. *Stress and Animal Welfare* (p. 211). Dordrecht: Kluwer.

Broom, D. M., & Zanella, A. J. (2004). Brain measures which tell us about animal welfare. *Animal Welfare*, *13*, S41-45.

Buckham Sporer, K., Xiao, L., Tempelman, R. J., Burton, J.L., Earley, B., Crowe, M.A. (2008). Transportation stress alters the circulating steroid environment and neutrophil gene expression in beef bulls. *Veterinary Immunology and Immunopathology, 121*, 300-320.

Caroprese, M., Napolitano, F., & Albenzio, M. (2006) . Influence of gentling on lamb immune response and human–lamb interactions.

Applied Animal Behaviour Science, 99, 118-131.

Earley, B. Murray, M. Prendiville, D.J. Pintado, B. Borque, C. Canali, E. (2012). The effect of transport by road and sea on physiology, immunity and behaviour of beef cattle. Research in Veterinary Science 92: 531-541

Hay, M., Vulin, A., Génin, S., Sales, P., Prunier, A. (2003). Assessment of pain induced by castration in piglets: Behavioral and physiological responses over the subsequent 6 days. *Applied Animal Behaviour Science*, *82*, 201-218.

Hiby, E.F., Rooney, N. J., Bradshaw, J.W.S. (2006). Behavioural and physiological responses of dogs entering re-homing kennels. Physiology & Behavior 89: 385-391

Livezey, G. T., Miller, J. M., & Vogel, W. H. (1985). Plasma norepinephrine, epinephrine and corticosterone stress responses to restraint in individual male and female rats, and their correlations. *Neuroscience Letters, 62*, 51-56.

Marcalo, A., Mateu , L., Correia, J. H. D., Serra, P., Fryer, R., Stratoudakis, Y. (2006). Sardine (*Sardina pilchardus*) stress reactions to purse seine fishing. *Marine Biology, 149*, 1509-1518.

### References

Martins, L. T., Gonçalves, M. C., Tavares, K. C. S., Gaudêncio, S., Santos Neto, P.C., Dias, A.L.G., Gava, A., Saito, M.E., Oliveira, C.A., Mezzalira, A., Vieira, A.D. (2011). Castration methods do not affect weight gain and have diverse impacts on the welfare of water buffalo males. *Livestock Science, 140*, 171-176.

Moberg, G. P. (2000). Biological response to stress: Implications for animal welfare. In G. P. Moberg & & J. A. Mench (Eds.), *The biology of animal stress: Basic principles and implications for animal welfare* (p. 1). Wallingford, UK: CABI.

Mormède, P., Andanson, S., Aupérin, B., Beerda, B., Guémené, D., Malmkvist, J., Manteca, X., Manteuffel, G., Prunet P., van Reenen, C.G., Richard, S., Veissier, I. (2007). Exploration of the hypothalamic-pituitary-adrenal function as a tool to evaluate animal welfare. *Physiology & Behavior, 92*, 317-339.

Shutt, D. A., Fell, L. R., Connell, R., Bell, A. K., Wallace, C. A. & Smith, A. I., (1987). Stress-induced changes in plasma concentrations of immunosuppressive ß-endorphin and cortisol in response to routine surgical procedures in lambs. *Australian Journal of Biological Sciences*, *40*, 97-103.

Siracusa, C., Manteca, X., & Cuenca, R. (2010). Effect of a synthetic appeasing pheromone on behavioral, neuroendocrine, immune, and acute-phase perioperative stress responses in dogs. *Journal of American Veterinary Medical Association*, 237, 673-681.

Solano, J., Galindo, F., Orihuela, A., Galina, C. S. (2004). The effect of social rank on the physiological response during repeated stressful handling in Zebu cattle (*Bos indicus*). *Physiology & Behavior, 82*, 679-683.

Stafford, K. J., Mellor, D. J., Todd, S. E., Bruce, R.A., Ward, R. N. (2002). Effects of local anaesthesia or local anaesthesia plus a nonsteroidal anti-inflammatory drug on the acute cortisol response of calves to five different methods of castration. *Research in Veterinary Science*, *73*, 61-70.

Zanella, A. J., Broom, D. M., Hunter, J. C., Mendl, M. T., (1996) Brain opioid receptors in relation to stereotypies, inactivity, and housing in sows. *Physiology & Behavior, 59*, 769-775.

Ziemssen, T., & Kern, S. (2007). Psychoneuroimmunology – Cross-talk between the immune and nervous systems. *Journal* of *Neurology*, 254 (Supplement 2), II/8-II/11.